理地思考与表达;在积累了一定的活动经验与掌握了一定的图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。
在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧。证明的要求控制在《标准》所规定的范围内。
(一)具体目标
1.图形的认识
(1)点、线、面
通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。
(2)角
①通过丰富的实例,进一步认识角。
②会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
③了解角平分线及其性质【1】
(3)相交线与平行线
注【1】角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上。
①了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。
②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。
③知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
④了解线段垂直平分线及其性质【1】。
⑤知道两直线平行同位角相等,进一步探索平行线的性质。
⑥知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。
⑦体会两条平行线之间距离的意义,会度量两条平行线之间的距离。
(4)三角形
①了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性。
②探索并掌握三角形中位线的性质。
③了解全等三角形的概念,探索并掌握两个三角形全等的条件。
④了解等腰三角形的有关概念,探索并掌握等腰三角形的性质【2】和一个三角形是等腰三角形的条件[3];了解等边三角形的概念并探索其性质。
⑤了解直角三角形的概念,探索并掌握直角三角形的性质[4]和一个三角形是直角三角形的条件[5]
⑥体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。
(5)四边形
①探索并了解多边形的内角和与外角和公式,了解正多边形的概念。
②掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
③探索并掌握平行四边形的有关性质[1]和四边形是平行四边形的条件[2]。([注解][1]平行四边形的对边相等、对角相等、对角线互相平分。[2]一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形